On Neumann problem for Laplace-Beltrami operators
نویسندگان
چکیده
منابع مشابه
Anisotropic Laplace-Beltrami Operators for Shape Analysis
This paper introduces an anisotropic Laplace-Beltrami operator for shape analysis. While keeping useful properties of the standard Laplace-Beltrami operator, it introduces variability in the directions of principal curvature, giving rise to a more intuitive and semantically meaningful diffusion process. Although the benefits of anisotropic diffusion have already been noted in the area of mesh p...
متن کاملDiscrete Laplace-Beltrami operators and their convergence
The convergence property of the discrete Laplace–Beltrami operators is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. In this paper we propose several simple discretization schemes of Laplace–Beltrami operators over triangulated surfaces. Convergence results for these discrete Laplace–Beltra...
متن کاملConvergent discrete Laplace-Beltrami operators over surfaces
The convergence problem of the Laplace-Beltrami operators plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve the operator. In this note we present a new effective and convergent algorithm to compute discrete Laplace-Beltrami operators acting on functions over surfaces. We prove a convergence t...
متن کاملDiscrete Laplace-Beltrami operators for shape analysis and segmentation
Shape analysis plays a pivotal role in a large number of applications, ranging from traditional geometry processing to more recent 3D content management. In this scenario, spectral methods are extremely promising as they provide a natural library of tools for shape analysis, intrinsically defined by the shape itself. In particular, the eigenfunctions of the Laplace-Beltrami operator yield a set...
متن کاملConvergence of Discrete Laplace-Beltrami Operators over Surfaces
The convergence property of the discrete Laplace-Beltrami operator is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. The aim of this paper is to review several already used discrete Laplace-Beltrami operators over triangulated surface and study numerically as well as theoretically their conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1961
ISSN: 0386-2194
DOI: 10.3792/pja/1195523670